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In this chapter we study components of velocities and accelerations in two
mutually perpendicular directions in a Polar curve.

POLAR CURVE:

In a polar curve r =f(0 ), there are two perpendicular directions, Radial and
Transverse as shown in the figure.

o Polor CLunve

VELOCITY AND ACCELERATION IN POLAR CO- ORDINATES (RADIAL AND
TRANSVERSE VELOCITIES):

Consider a particle moves in a plane curve. Let P (r, 8 ) be its position in time t
and Q(r + &r,8 + 60) be its position in time (t+ §t). Take ‘O’ as the pole and OX-
as initial line. Velocity along the radius vector OP in the direction of r increasing
is called the radial velocity and the velocity in the direction perpendicular to
OP in the direction of Q increasing is called the transverse velocity.



displacement along OP in time 6t
ot

So Radial Velocity at P = limg;_, g

ON-OP

. PN .
=limg; 0 Y limge o St

(r+ér)cos60—r

=lim
ot—0 St
2
(r+6r)[1—%+m.... -r
=lim :
ot—0 St
. (r+ér)(1)—r
=lim
ot—0 St
(neglecting higher powers of 69)
=lim &y

So, Radial velocity = T

Also, Transverse Velocity at P
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So, Transverse velocity = rf
RADIAL AND TRANSVERSE ACCELERATIONS:
Let u, v be the radial and transverse velocities at (r,8) and (u + du),(v +év )

radial and transverse velocities at Q (r + ér,80 + 660 ).

change invelocity along OP in time 6t

So Radial acceleration at P = limg;_, 5t
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So, Radial acceleration = T (E)

Now, Transverse acceleration at P
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So, Transverse acceleration = —— (1'29)
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Velocities and Accelerations Magnitude
1 Radial Component of velocity
T
Transverse Component of velocity
réo
Radial component of acceleration ¥ —1r(8)?
Transverse component of acceleration 2
r dt (r 9)

Example: If a point moves so that its radial velocity is k times its transverse
velocity, then show that its path is an equiangular spiral.

Solution:
Given, radial velocity = k X transverse velocity
=1 = kré
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Integrating, logr =k 6 + log A, A = constant
i.e. r=Aek?

which is an equiangular spiral.




Example 2

A point moves in a circular path of radius “a” so that its angular velocity about
a fixed point in the circumference of the circle is constant, equal to w .Show
that the resultant acceleration of the point at every point of the path is of
constant magnitude 4 aw °.

Solution: Let ‘O’ be the fixed point (pole), OC —initial line. Polar equation of
thecircleisr=2acos 8 .LetP(r, ) be the position at time ‘t’ then angular

velocity about O is 8 = w (constant)
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So, Resultant acceleration =\/(—4a w2cos ) + (—4aw 2sin0)
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